Techrxiv Preprints

A Primer on Ray-Tracing: Shooting and Bouncing Ray Method Ray-tracing is a promising alternative for Radio Frequency Planning particularly in urban areas. There are two fundamental techniques used for ray-tracing namely Shooting and Bouncing Rays and Method of Images. In this paper, we focus on the former and present simulation results for an urban scenario in the city of Helsinki. We also give an insight into how the Shooting and Bouncing Ray method can be implemented using basic linear algebra techniques. We show that ray-tracing can be used to evaluate the performance improvement attained through electromagnetic reflectors. Finally, we close […]

Read more

BER for BPSK-OFDM in Frequency Selective Channel

As the data rates supported by wireless networks continue to rise the bandwidth requirements also continue to increase (although spectral efficiency has also improved). Remember GSM technology which supported 125 channels of 200KHz each, which was further divided among eight users using TDMA. Move on to LTE where the channel bandwidth could be as high as 20MHz (1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz and 20MHz are standardized). This advancement poses a unique challenge referred to as frequency selective fading. This means that different parts of the signal spectrum would see a different channel (different amplitude and different phase offset). Look at […]

Read more

Rayleigh Fading Envelope Generation – Python

When wireless signals travel from a transmitter to a receiver they do so after reflection, refraction, diffraction and scattering from the environment. Very rarely is there a direct line of sight (LOS) between the transmitter and receiver. Thus multiple time delayed copies of the signal reach the receiver that combine constructively and destructively. In a sense the channel acts as an FIR (finite impulse response) filter. Furthermore since the transmitter or receiver may be in motion the amplitude and phase of these replicas varies with time. There are several methods to model the amplitude and phase of each of these […]

Read more

Sum of Sinusoids Fading Simulator

We have previously looked at frequency domain fading simulators i.e. simulators that define the Doppler components in the frequency domain and then perform an IDFT to get the time domain signal. These simulators include Smith’s Simulator, Young’s Simulator and our very own Computationally Efficient Rayleigh Fading Simulator. Another technique that has been widely reported in the literature is Sum of Sinusoids Method. As the name suggests this method generates the Doppler components in the time domain and then sums them up to generate the time domain fading envelope. There are three parameters that define the properties of the generated signal. […]

Read more

Modified Young’s Fading Simulator

In the previous posts we had discussed generation of a correlated Rayleigh fading sequence using Smith’s method [1] and Young’s modification of Smith’s method [2]. The main contribution of Young was that he proposed a mechanism where the number of IDFTs was reduced by half. This was achieved by first adding two length N IID zero mean Gaussian sequences filtered by the filter F[k] and then performing the IDFT on the resulting complex sequence. This was different to Smith’s method where the IDFT was performed simultaneously on two branches and then the outputs of these branches were added in quadrature […]

Read more

Fading Model – From Simple to Complex

1. The simplest channel model just scales the input signal by a real number between 0 and 1 e.g. if the signal at the transmitter is s(t) then at the receiver it becomes a*s(t). The effect of channel is multiplicative (the receiver noise on the other hand is additive). 2.   The above channel model ignores the phase shift introduced by the channel. A more realistic channel model is one that scales the input signal as well rotates it by a certain angle e.g. if s(t) is the transmitted signal then the received signal becomes a*exp(jθ)*s(t). 3. In a realistic […]

Read more

MIMO Capacity in a Fading Environment

The Shannon Capacity of a channel is the data rate that can be achieved over a given bandwidth (BW) and at a particular signal to noise ratio (SNR) with diminishing bit error rate (BER). This has been discussed in an earlier post for the case of SISO channel and additive white Gaussian noise (AWGN). For a MIMO fading channel the capacity with channel not known to the transmitter is given as (both sides have been normalized by the bandwidth [1]): Shannon Capacity of a MIMO Channel where NT is the number of transmit antennas, NR is the number of receive […]

Read more

Computationally Efficient Rayleigh Fading Simulator

We had previously presented a method of generating a temporally correlated Rayleigh fading sequence. This was based on Smith’s fading simulator which was based on Clark and Gan’s fading model. We now present a highly efficient method of generating a correlated Rayleigh fading sequence, which has been adapted from Young and Beaulieu’s technique [1]. The architecture of this fading simulator is shown below. This method essentially involves five steps. 1. Generate two Gaussian random sequences of length N each. 2. Multiply these sequences by the square root of Doppler Spectrum S=1.5./(pi*fm*sqrt(1-(f/fm).^2). 3. Add the two sequences in quadrature with each other […]

Read more

Can We Do Without a Cyclic Prefix

Have you ever thought that Cyclic Prefix in OFDM is just a gimmick and we could do equally well by using a guard period i.e. a period of no transmission between two OFDM symbols. Well, one way to find out if this is true is by running a bit error rate simulation with and without a cyclic prefix (only a vacant guard period). We use the 64-QAM OFDM simulation that we developed previously. The channel is modeled as 7-tap FIR filter with each tap having a Rayleigh distribution. BER with and without Cyclic Prefix We simulate the case of a […]

Read more