Sum of Sinusoids Fading Simulator

We have previously looked at frequency domain fading simulators i.e. simulators that define the Doppler components in the frequency domain and then perform an IDFT to get the time domain signal. These simulators include Smith’s Simulator, Young’s Simulator and our very own Computationally Efficient Rayleigh Fading Simulator. Another technique that has been widely reported in the literature is Sum of Sinusoids Method. As the name suggests this method generates the Doppler components in the time domain and then sums them up to generate the time domain fading envelope. There are three parameters that define the properties of the generated signal. […]

Read more

Uniform, Gaussian and Rayleigh Distribution

It is sometimes important to know the relationship between various distributions. This can be useful if there is a function available for one distribution and it can be used to derive other distributions. In the context of Wireless Communications it is important to know the relationship between the Uniform, Gaussian and Rayleigh distribution. According to Central Limit Theorem the sum of a large number of independent and identically distributed random variables has a Gaussian distribution. This is used to model the amplitude of the in-phase and quadrature components of a wireless signal. Shown below is the model for the received […]

Read more

Implementing a Non-Uniformly Spaced Tapped Delay Line Channel Model

Question: Since you are good on fundamentals I would like to ask you a question that puzzles me. LTE channels models are defined at irregular time intervals as shown in [1]. The EPA, EVA and ETU channel taps can best be described as being sampled at multiples of 10 nsec. However, LTE signal is sampled at multiples of 3.84 MHz (Ts=260.416667 nsec). So how does one perform convolution operation. Answer: Empirical multipath channel is usually characterized as a τ-spaced tapped delay line (TDL), whose power delay profile (PDP) is either uniformly spaced, or more frequently, spaced with arbitrary time delay(s). […]

Read more

MIMO Capacity in a Fading Environment

The Shannon Capacity of a channel is the data rate that can be achieved over a given bandwidth (BW) and at a particular signal to noise ratio (SNR) with diminishing bit error rate (BER). This has been discussed in an earlier post for the case of SISO channel and additive white Gaussian noise (AWGN). For a MIMO fading channel the capacity with channel not known to the transmitter is given as (both sides have been normalized by the bandwidth [1]): Shannon Capacity of a MIMO Channel where NT is the number of transmit antennas, NR is the number of receive […]

Read more

A Rayleigh Fading Simulator with Temporal and Spatial Correlation

Just to recap, building an LTE fading simulator with the desired temporal and spatial correlation is a three step procedure. 1. Generate Rayleigh fading sequences using Smith’s method which is based on Clarke and Gan’s fading model. 2. Introduce spatial correlation based upon the spatial correlation matrices defined in 3GPP 36.101. 3. Use these spatially and temporally correlated sequences as the filter taps for the LTE channel models. We have already discussed step 1 and 3 in our previous posts. We now focus on step 2, generating spatially correlated channels coefficients. 3GPP has defined spatial correlation matrices for the Node-B […]

Read more

LTE Multipath Channel Models

When a wireless signal travels from a transmitter to a receiver it follows multiple paths. The signal may travel directly following the line of sight between the transmitter and receiver, it may bounce off the ground and reach the receiver or it may be reflected by multiple buildings on the way to the receiver. When these copies of the same signal arrive at the receiver they are delayed and attenuated based upon the path length that they have followed and various other factors. A well known technique to model such a wireless channel is to model it as an FIR […]

Read more