5G Rollout in the USA: Long Way to Go

There is a 3 way race for 5G leadership in the US between T-Mobile(+Sprint), Verizon and AT&T. There are competing claims for the number of 5G subscribers, coverage area and download speeds. But let us look where the 5G industry stands today compared to the expectations a few years back. More than 80% of US population lives in urban areas which comprise of 2% of the total land area of about 10 million squared kilometers. That is 80% of the population lives in an area of about 200,000 squared kilometers.

Read more

Open Signal Coverage Maps for Pakistan

Open Signal is a mobile application that collects the data about your wireless network (2G/3G/4G) and generates coverage maps and host of other reports. The data is collected in the background while the user is busy in his daily routines. But data can also be collected on the request of the user. This is much better than drive testing since the data is collected in real life scenarios and on thousands of different devices that are in use. The app works while the user is indoor or outdoor, at rest or in motion, on land or on water, at sea […]

Read more

Some Common Antenna Radiation Patterns

A Radiation Pattern is a 3 dimensional description of how an antenna radiates power in the surrounding space. This pattern is usually measured at a sufficient distance from the antenna known as the far-field. In simple words it is the power radiated in a certain direction with reference to an omni-directional antenna (a theoretical antenna that radiates   equally in all the directions). Given below are the radiation patterns for some common antenna types. Dipole Antenna 3D Radiation Pattern Although the Radiation Pattern is a 3 dimensional quantity it is usually sufficient to describe it in two orthogonal planes (one […]

Read more

Antenna Gain and Directivity

Antenna Gain and Directivity are two terms that are sometimes not that well understood. The Antenna Gain and Directivity are related through the following equation. G(θ,φ)=E*D(θ,φ) That is, the Antenna Gain in a particular direction is equal to the Directivity in that direction multiplied by the Antenna Efficiency. Antenna Directivity is the ratio of energy transmitted (or received) by the antenna in a particular direction to the energy transmitted (or received) in that direction by an isotropic source. This is also known as the Directive Gain. The Antenna Gain (also known as the Power Gain) seems to be a better […]

Read more

E-field of a Dipole Antenna

In the previous post we plotted the E-field of a half wave dipole. We now turn our attention to higher antenna lengths such 1,1.5 and 2.0 times the wavelength. The E-field pattern is a three dimensional pattern, however, we only plot the E-field in a 2D plane along the axis of the dipole. It is observed that as the antenna length is increased from 0.5*wavelength to 1.0*wavelength the antenna becomes more directional. However, as the length is further increased from 1.0*wavelength to 1.5*wavelength and 2.0*wavelength sidelobes begun to appear. These sidelobes are an unwanted phenomenon in a typical telecommunications application. […]

Read more

WINNER-II Path Loss Model

In simple terms the path loss is the difference between the transmitted power and the received power of a wireless communication system. This may range from tens of dB to more than a 100 dB e.g. if the transmitted power of a wireless communication system is 30 dBm and the received power is -90 dBm then the path loss is calculated as 30-(-90)=120 dB. Path loss is sometimes categorized as a large scale effect (in contrast to fading which is a small scale effect). According to the WINNER-II model the path loss can be calculated  as: Here d is the […]

Read more

Soft Frequency Reuse in LTE

Frequency Reuse is a well known concept that has been applied to wireless systems over the past two decades e.g. in GSM systems. As the name suggests Frequency Reuse implies using the same frequencies over different geographical areas. If we have a 25MHz band then we can have 125 GSM channels and 125*8=1000 time multiplexed users in a given geographical area. Now if we want to increase the number of users we would have to reuse the same frequency band in a geographically separated area. The technique usually adopted is to use a fraction of the total frequency band in […]

Read more

4G LTE Coverage within Virginia

Since our last post on Verizon LTE coverage within California, Verizon has removed the LTE Coverage Map from its site. Now it only gives a list of cities that have 4G LTE service (just like T-Mobile). So we now move from the West Coast to the East Coast i.e. Virginia. The state that is home to Virginia Tech, one of the finest schools in the country and a breeding ground for Wireless Engineers. It is thus somewhat of a shock to see that Verizon Wireless has no 4G LTE footprint in the state of Virginia. The only place that it […]

Read more

Verizon 4G LTE Deployment Within California

We have previously looked at the birds eye view of 4G LTE coverage within the US. We know that Verizon 4G services are now available to more than 50% of the US population. However, geographically, the service is only available in very small islands of population. Now, we take a closer look at 4G LTE coverage within California. LTE Coverage in CA We see that the coverage is available in most of the population centers such as Sacramento, San Francisco, Oakland, San Jose, Fresno and Bakersfield. Further south the coverage is also available in areas around Los Angeles and San […]

Read more