Tag Archives: BER

MSK Bit Error Rate in Rayleigh Fading

I - In the previous two posts we discussed MSK performance in an AWGN channel, first presenting the MATLAB/OCTAVE Code for one sample per symbol case [Post 1], and then extending it to the more general case of multiple samples per symbol [Post 2]. This helps us visualize the underlying beauty of Continuous Phase Modulation (CPM) which reduces out of band energy and consequently lowers Adjacent Channel Interference (ACI). We also briefly touched upon the case of MSK in Rayleigh fading, but did not go into the details. So here we take a deeper dive.
Continue reading MSK Bit Error Rate in Rayleigh Fading

Minimum Shift Keying Bit Error Rate in AWGN

I - Minimum Shift Keying (MSK) is a type of Continuous Phase Modulation (CPM) that has been used in many wireless communication systems. To be more precise it is Continuous Phase Frequency Shift Keying (CPFSK) with two frequencies f1 and f2. The frequency separation between the two tones is the minimum allowable while maintaining orthogonality and is equal to half the bit rate (or symbol rate, as both are the same). The frequency deviation is then given as Δf=Rb/4. The two tones have frequencies of fc±Δf where fc is the carrier frequency. MSK is sometimes also visualized as Offset QPSK (OQPSK) but we will not go into its details here. 
Continue reading Minimum Shift Keying Bit Error Rate in AWGN

BER for BPSK-OFDM in Frequency Selective Channel

OFDM Tx-Rx Block Diagram

As the data rates supported by wireless networks continue to rise the bandwidth requirements also continue to increase (although spectral efficiency has also improved). Remember GSM technology which supported 125 channels of 200KHz each, which was further divided among eight users using TDMA. Move on to LTE where the channel bandwidth could be as high as 20MHz (1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz and 20MHz are standardized).

This advancement poses a unique challenge referred to as frequency selective fading. This means that different parts of the signal spectrum would see a different channel (different amplitude and different phase offset). Look at this in the time domain where the larger bandwidth means shorter symbol period causing intersymbol interference (as time delayed copies of the signal overlap on arrival at the receiver).

The solution to this problem is OFDM that divides the wideband signal into smaller components each having a bandwidth of a few KHz. Each of these components experiences a flat channel. To make the task of equalization simple a cyclic prefix (CP) is added in the time domain to make the effect of fading channel appear as circular convolution. Thus simplifying the frequency domain equalization to a simple division operation.

Shown below is the Python code that calculates the bit error rate (BER) of BPSK-OFDM which is the same as simple BPSK in a Rayleigh flat fading channel. However there is a caveat. We have inserted a CP which means we are transmitting more energy than simple BPSK. To be exact we are transmitting 1.25 (160/128) times more energy. This means that if this excess energy is accounted for the performance of BPSK-OFDM would be 1dB (10*log10(1.25)) worse than simple BPSK in Rayleigh flat fading channel.

Note:

  1. Although we have shown the channel as a multiplicative effect in the figure above, this is only true for a single tap channel. For a multi-tap channel (such as the one used in the code above) the effect of the channel is that of a filter which performs convolution operation on the transmitted signal.
  2. We have used a baseband model in our simulation and the accompanying figure. In reality the transmitted signal is upconverted before transmission by the antennas.
  3.  The above model can be easily modified for any modulation scheme such as QPSK or 16-QAM. The main difference would be that the signal would have a both a real part and an imaginary part, much of the simulation would remain the same. This would be the subject of a future post. For a MATLAB implementation of 64-QAM OFDM see the following post (64-QAM OFDM).
  4. Serial to parallel and parallel to serial conversion shown in the above figure was not required as the simulation was done symbol by symbol (one OFDM symbol in the time domain represented 128 BPSK symbols in the frequency domain).
  5. The channel model in the above simulation is quasi-static i.e. it remains constant for one OFDM symbol but then rapidly changes for the next, without any memory.

Run Python Code from the Browser

Here is a piece of Python code that calculates Bit Error Rate (BER) of BPSK. The code is a bit slow at the moment, compared to MATLAB implementation, but this is work in progress and further optimizations would be carried out. We would like to point out that the main reason for this slower implementation is that a bit by bit error calculation is done, instead of a vectorial implementation. We already pointed out in our previous post that a “for loop” implemented in Python is not that efficient.

Theoretical BER of M-QAM in Rayleigh Fading

We have previously discussed the Bit Error Rate of M-QAM in Rayleigh Fading using Monte Carlo Simulation. We now turn our attention to calculation of Bit Error Rate (BER) of M-QAM in Rayleigh fading using analytical techniques. In particular we look at the method used in MATLAB function berfading.m. In this function the BER of 4-QAM, 16-QAM and 64-QAM is calculated from series expressions having 1, 3 and 5 terms respectively. These are given below (M is the constellation size and must be a power of 2).

if (M == 4)
     ber = 1/2 * ( 1 - sqrt(gamma_c/k./(1+gamma_c/k)) );
elseif (M == 16)
     ber = 3/8 * ( 1 - sqrt(2/5*gamma_c/k./(1+2/5*gamma_c/k)) ) ...
     + 1/4 * ( 1 - sqrt(18/5*gamma_c/k./(1+18/5*gamma_c/k)) ) ...
     - 1/8 * ( 1 - sqrt(10*gamma_c/k./(1+10*gamma_c/k)) );
elseif (M == 64)
     ber = 7/24 * ( 1 - sqrt(1/7*gamma_c/k./(1+1/7*gamma_c/k)) ) ...
     + 1/4 * ( 1 - sqrt(9/7*gamma_c/k./(1+9/7*gamma_c/k)) ) ...
     - 1/24 * ( 1 - sqrt(25/7*gamma_c/k./(1+25/7*gamma_c/k)) ) ...
     + 1/24 * ( 1 - sqrt(81/7*gamma_c/k./(1+81/7*gamma_c/k)) ) ...
     - 1/24 * ( 1 - sqrt(169/7*gamma_c/k./(1+169/7*gamma_c/k)) );

Although using these expressions we get very accurate BER but it is not that simple to calculate (the expressions become even more complicated for higher constellation sizes such as 256-QAM). Therefore we try to simplify these expressions by using only the first term in each expression. To our surprise the results match quite well with the results using the exact formulae. There is very minor difference at low signal to noise ratios but that can be easily bargained for the ease of calculation.

So here is our program for calculating the BER using the approximate method.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FUNCTION TO CALCULATE THE BER OF M-QAM IN RAYLEIGH FADING
% M: Input, Constellation Size
% EbNo: Input, Energy Per Bit to Noise Power Spectral Density
% ber: Output, Bit Error Rate
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ber]= BER_QAM_fading (M, EbNo)

k=log2(M);
EbNoLin=10.^(EbNo/10);
gamma_c=EbNoLin*k;

if M==4
    %4-QAM
    ber = 1/2 * ( 1 - sqrt(gamma_c/k./(1+gamma_c/k)) );
elseif M==16
    %16-QAM
    ber = 3/8 * ( 1 - sqrt(2/5*gamma_c/k./(1+2/5*gamma_c/k)) );
elseif M==64
    %64-QAM
    ber = 7/24 * ( 1 - sqrt(1/7*gamma_c/k./(1+1/7*gamma_c/k)) );
else 
    %Warning
    warning('M=4,16,64')
    ber=zeros(1,length(EbNo));
end

semilogy(EbNo,ber,'o-')
xlabel('EbNo(dB)')
ylabel('BER')
axis([0 24 0.001 1])
grid on

return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

QAM BER Approximate

So we see that the results match quite well with the results previously obtained through simulation. We will next tackle the problem of simplifying the expression for higher order modulations such as 256-QAM in both Rayleigh and Ricean channels.