Simulating a SISO Ring Model

A Ring Model is a well known spatial channel model. It models the propagation channel as an unobstructed transmitter and a receiver surrounded by a ring of reflectors. The distance between the transmitter and receiver is usually much larger than the radius of the ring. The reflectors are distributed uniformly around the ring. This model is useful for modeling a scenario where a base station is located at sufficient altitude and is unobstructed whereas the mobile station is at ground level and is surrounded by a bunch of reflectors. Ring Model Given below is the MATLAB code for a SISO Ring […]

Read more

Simulating a MIMO Ring Model

A Ring Model is a well known spatial channel model. It models the propagation channel as an unobstructed transmitter and a receiver surrounded by a ring of reflectors. The distance between the transmitter and receiver is usually much larger than the radius of the ring. The reflectors are distributed uniformly around the ring. This model is useful for modeling a scenario where a base station is located at sufficient altitude and is unobstructed whereas the mobile station is at ground level and is surrounded by a bunch of reflectors. Given below is the MATLAB code that calculates the composite signal (from […]

Read more

Ray-Tracing for Network Planning-II

It’s very easy to get lost in the jargon when selecting a simulation tool for planning your wireless network. You will be faced with complex terminology which would not make much sense. At one end of the spectrum are solutions based on simple empirical models while at the other end are solutions based on ray-tracing techniques. Empirical models are based on measurement data and are your best bet if you want a quick and cheap solution whereas ray-tracing techniques are based on laws of physics and promise more accurate results. In principle ray-tracing techniques are quite simple: just transmit a […]

Read more

Solar Analogy

All electromagnetic energy travels in the form of rays. The most obvious example is solar energy that is radiated by the sun in all directions. The further away a body is from the sun the lower the energy that it receives. Objects in the path of these rays cause shadows but not complete darkness as rays reflect from other objects and also diffract around the edges. These rays also have a phase and frequency that determines their behaviour when interacting with objects. The amount of rays that can be collected by a receiver depends upon its size and orientation. Solar […]

Read more

Ray-Tracing for Network Planning-I

It’s very easy to get lost in the jargon when selecting a simulation tool for planning your wireless network. You will be faced with complex terminology which would not make much sense. You will be told that ray-tracing is the solution to all problems and outperforms all other techniques. However ray-tracing is only accurate when the following factors have been considered. Granularity of the terrain database Granularity in field calculations Accuracy in representation of building materials Accuracy in modeling the various propagation phenomenon Upper limit on the number of interactions

Read more