The uplink capacity of a WCDMA cell also known as the pole capacity is given as:
N=(W/R)/((Eb/Nt)*v*(1+a))
where
W is the spreading bandwidth fixed at 3.84MHz
R is the radio access bearer bit rate e.g. 12.2kbps
Eb/Nt is the energy per bit to noise power spectral density ratio e.g. 5dB
v is the voice activity factor which depends upon the vocoder, channel coding and actual application e.g. 0.5
a is the other-cell to in-cell interference ratio e.g. 0.65
Using the above values the pole capacity of the WCDMA cell is calculated as 120. In the case of a mobile UE (3km/hr) the required Eb/Nt may be as high as 12dB resulting in pole capacity of 24. The actual capacity is obtained by multiplying the pole capacity with network loading factor which maybe taken as 0.75 in this example resulting in an uplink capacity of 18.
Author: Yasir Ahmed (aka John)
More than 20 years of experience in various organizations in Pakistan, the USA, and Europe. Worked as a Research Assistant within the Mobile and Portable Radio Group (MPRG) of Virginia Tech and was one of the first researchers to propose Space Time Block Codes for eight transmit antennas. The collaboration with MPRG continued even after graduating with an MSEE degree and has resulted in 12 research publications and a book on Wireless Communications. Worked for Qualcomm USA as an Engineer with the key role of performance and conformance testing of UMTS modems. Qualcomm is the inventor of CDMA technology and owns patents critical to the 4G and 5G standards.